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Abstract. A self-consistent formulation for the force field and the associated dipole force 
tensor is presented. In the tight-binding approximation of the Hartree-Fock scheme, the 
variation of the total energy of the solids-up to first order in the atomic displacement-is 
obtained in terms of neutral quantities with respect to the frozen crystal. Improvements from 
our previous estimations concerning dilute substitutional and interstitial alloys are reported. 
Also, we present-for the first time-a derivation of the force field arising from the presence 
of the surface of a transition metal. 

1. Introduction 

The calculation of the electronic structure of defects in solids is generally restricted to 
frozen systems. However, the presence of a defect in a crystal modifies its total energy 
so that the interatomic distances are changed. This relaxation is important for the 
understanding of local order, magnetic and thermodynamic properties, surface recon- 
struction, etc. From x-ray measurements, Alefeld and Volkl (1978) have deduced the 
dipole force tensor in metal hydrides. The measurement of surface relaxation has been 
performed by low-energy electron diffusion (Sokolov et a1 1984, Adams et a1 1985) and 
by ion scattering (Gustafsson et a1 1988). 

Improvements in computing power and numerical algorithms have recently enabled 
more ambitious first-principles calculations to be done. We mention first the molecular 
dynamics method, which treats both the electronic and nuclear degrees of freedom on 
a common footing (Car and Parrinello 1985). Soler and Williams (1989) have recently 
presented a simple formula for the atomic forces in the augmented plane-wave method. 
Surface reconstruction has recently been studied by Ho and Bohnen (1987) and by 
Takeuchi et a1 (1989). The work of Ho and Bohnen uses the bulk norm-conserving 
pseudopotential and five Gaussian d orbitals per atom, whereas Takeuchi et a1 studied 
one monolayer of gold or silver on a jellium. However, up to now, no sufficiently 
practical formulae have been obtained for the force on the atoms, similar to those 
existing for the plane-wave pseudopotential method (Ihm er a1 1979). Consequently, 
a variety of empirical and semiempirical schemes have been developed to describe 
interatomic forces in solids; Sutton et a1 (1988) have given a review of these methods in 
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the case of the bulk. For the surface, Ercolessi etal (1986) have proposed the glue model, 
which is similar to the embedded-atom method of Daw and Baskes (1984). Surface 
relaxation and reconstruction have also been studied, in the tight-binding approxi- 
mation, using a Born-Mayer pair potential to mimic the ion-ion repulsion (Brocksch 
and Bennemann 1985, Rosato et a1 1989). 

We will now present the essential physical features of our self-consistent formulation 
for the forces arising from the presence of a point defect or surface in a transition metal. 
In this model we start with a complete orthonormalised basis set built from the atomic 
orbitals lAm) of the frozen metal (A is the site and m the symmetry). In order to describe 
the atomic displacements in the undisplaced basis set, we introduce, following Mor aitis 
and Gautier (1979), a pseudopotential 6 w t  whose matrix elements take into account 
the modification of the metallic levels and the hopping integrals. The variation of the 
total energy 6 E  of the system, in the Hartree-Fock scheme, is given by 

where the band energy contribution 6Eb, is complemented by the ion-ion interaction 
energy minus the ‘double-counting term’. The relaxation introduces charge transfer 
due to electronic rearrangement around the displaced atoms. This charge transfer 
contribution does not appear in the final expression for 6 E  in the case of homogeneous 
dilatation of the pure metal (force theorem of McIntosh and Andersen (1980)). 

Therefore, this theorem cannot be used for the study of phonons. In the scheme of 
Moraitis et a1 (1985), this force theorem has been generalised to the case of inhomo- 
geneous deformation induced by point defects. Let us remark that: 

(i) the absence of charge transfer in the final expression for 6E results from exact 
compensation between the different contributions to the total energy of the solids; it is 
valid up to first order in the atomic displacement U ;  and 

(ii) no phenomenological form for the repulsive term is needed. 

Consequently, the present self-consistent scheme for the derivation of the force field 
does not invoke charge neutrality, nor the Born-Mayer form for the repulsive energy 
(Ohta et a1 1987). 

The tight-binding (TB) approximation used here neglects, as usual, the overlap 
between atomic orbitals on different sites and is restricted to two-centre approximation. 
In this work, we assume that: 

(i) the TB orbitals are the same as those of the host for substitutional impurities and 
surface and those of the host plus one s orbital for the metalloid (for light interstitials); 
and 

(ii) the relaxed atomic orbitals are deduced from the corresponding orbitals in the 
frozen lattice, by a rigid displacement. 

In section 2, a general expression for the variation of the total energy 6 E  in the TB 
formalism is derived. In the case of point defects, the matrix elements of the perturbing 
potential AV(r) are deduced from Friedel’s sum rule. Once this has been done, 
expressions for 6 E  in the case of substitutional and interstitial impurities can be obtained 
(Moraitis et a1 1985, Khalifeh e ta l  1982a, b). 

t In this paper 6 stands for atomic relaxation whereas A is the perturbation induced by the impurity or the 
surface in the frozen lattice. 
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An application to the case of the surface of a transition metal has been derived for 
the first time. A local neutrality approximation has been used for the description of the 
electronic structure of the frozen surface. It is easy to prove that, up to first order in the 
atomic displacement, and due to cancellation between a charge-transfer term in 6E,, 
and one in 6Ee,-el, the final expression for 6 E  depends only on neutral quantities upon 
relaxation. 

Section 3 is devoted to the determination of the force field. For substitutional 
impurities, the model of Moraitis et a1 (1985) has been extended in order to take full 
account of the variation of the energies of the metallic levels in the expression for the 
dipole force tensor P (appendix 1). Let us remark that, in this scheme, the forces and P 
are expressed in terms of variation of the energy of the metallic levels and hopping 
integrals induced by the movement of neutral atoms. 

A complete derivation of the force field around a light interstitial in transition metals 
is reported. Special attention is devoted to the derivation of P arising from the variation 
of the metallic and metalloid levels (appendix 2) and from the hydrogen-induced bound 
state (appendix 3). Finally, a derivation of the force field arising from the presence of 
the surface is performed. 

Section 4 presents the conclusions. 

2. Expression for the variation of the total energy in the tight-binding approximation 

An expression for 6 E  is obtained when the Hamiltonian Hof the system can be described 
in a tight-binding formalism (section 2.1). Applications to the case of substitutional 
impurities (section 2.2), interstitial defects (section 2.3) and the surface of a transition 
metal (section 2.4) are reported. 

2.1. General formulation fo r  6E  

The tight-binding (TB) formalism is known to give a rather good representation of the d 
bands of transition metals and alloys (Friedel 1969). In the TB representation, the one- 
electron Hamiltonian for the unrelaxed system is given by 

where cpr(r) = ( r  IAm) represents the atomic orbital of m symmetry centred on site A ,  
P;r,”’ are the hopping integrals and E X  the energy levels. In this work we assume that the 
TB orbitals, in the case of substitutional impurities and the surface, are the same as those 
of the host. In the case of light interstitials (like H, B, C, N ,  . . .) at site I ,  ET and IIm) 
are respectively the energy of the interstitial in the alloy and the metalloid orbital. Also, 
we suppose that the set of atomic orbitals is complete. 
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In the Hartree scheme, the variation of the total energy of the system is given by 

6 E  = 6Eb, - 6Ee,-,l + GEion-ion (2 .2)  

where SEb, denote the band-structure contribution 
&F 

6Eb, = 1 &an(&) de. 

After an integration by parts we obtain 

6E,, = eF6N(eF) - 1" 6N(e )  d e  

where & ( E )  is the variation of the density of states due to the relaxation and 6 N ( e )  is 
the number of displaced states up to energy E relative to the relaxation 

bN(e )  = -(l/n) Im Tr log(1 - SWC). (2.5) 

Here G is the unrelaxed Green function associated with H and 6W is a pseudopotential 
defined in the basis of the undisplaced orbitals by its matrix elements (Moraitis and 
Gautier 1979) 

swy = SEX = (6Am/HlAm) + (AmIHIGAm) + (AmIGVIAm) ( 2 . 6 ~ )  

swg = 6g"' ) b P  = (6Am IHI pm') + (Am I HI 6pm') + (Am I SVI pm')  (2.6b) 

Se% = SP'eT + S " E 7  ( 2 . 6 ~ )  

Sgy;' = P&?' + 6"/3Ty. (2.6d) 

To the first order of perturbation, S N ( e )  can be expressed as 

with 

N m ' m  = - - Im Grim(&) de. (2.7b) P?. n 

Using the relations (2.6), 6Eh, can be decomposed into P E b ,  and 6"Eb, with 

6"Ebs  = ne'(,) 6V(r) d 3 r  J 
with 

(2.10) 

Here ( r  I SAm) = 6qm(r  - A )  is the modification of the atomic orbital centred on the A 
site arising from the displacement of this site and 6V(r) represents the variation of the 
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Hartree potential induced by the relaxation. On the other hand, 6Ee1-,l and 6Eion-ion are 
given by 

6E,,-,, = I 6Ve1(r)ncl(r) d 3 r  (2 .11~)  

6Eion-ion = - 6Vion(r)nio"(r) d 3r.  J (2.11b) 

In these expressions 6Ve1(r) and 6Vio"(r) are, respectively, the electronic and ionic 
contributions to 6V(r),  whereas nel(r) and n'""(r) represent the electronic and ionic 
densities for the unrelaxed alloys. 

This general scheme will now be applied to three different cases: 

(i) The simplest case is the dilute alloy of a transition element. For a small difference 
of charge AZ between the impurity and the matrix, a model with a perturbing potential 
AV restricted to its own cell is reliable. 

(ii) The second application is related to light interstitial impurities in transition 
metals. Interstitials are usually located at octahedral or tetrahedral positions depending 
on the nature of the host. For example, hydrogen is located (Ligeon et a1 1986) at 
octahedral positions in FCC transition metals and at tetrahedral positions in BCC transition 
metals. 

(iii) Finally, investigations on the forces at the surface of a transition metal is 
discussed. 

2.2. Transition-metal impurity in the localised perturbing potential model 

The Hamiltonian in this case is given by 

H = H o + A V  (2.12) 

where only matrix elements on the impurity site are taken into account in the deter- 
mination of the phase shift. In (2.12) H o  is the Hamiltonian of the pure metal. 

In this case, 6E can be written as (Moraitis eta1 1985) 

6 E  = 2 A N y ~ ' 6 W ~ ~ ) " '  - SVo(")(r) Anion(r) d 3 r  
1.p. 
m,m' 

+ 6AVe1(n)(r)An(r) d 3 r  (2.13) J 
where 

(2.14) 

and Go and G are the Green functions of the unrelaxed pure metal and alloy, respectively. 
In the above, 6W0(") represents the modification of the hopping integrals and energy 
levels in the host induced by the displacement of neutral atoms; avo(") represents the 
variation of the host potential upon the displacement of neutral atoms; whereas 6AVe1(") 
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is the variation of the electronic perturbing potential upon the displacement of neutral 
atoms. Moreover, 

An(r) = Anel(r) - Anion(r) (2.15) 

where Ane1 (An"") represent the changes in electronic (ionic) densities of the host no*e1 
(no.ion) introduced by the impurity in the unrelaxed system. 

2.3. Hydrogen impurity in a transition metal 

The Hamiltonian in this case is given by 

H = H o + I Z s ) ~ ? ( Z ~ / +  (IRm)PW(ZsI+Hc)+ E IRm)Vy"(R)(RmI. (2.16) 
R.m R.m 

Here E ;  is the energy level introduced by the interstitial, at site I ,  is the hopping 
integral between metallic orbital 1 Rm) and interstitial orbital 1 Is), HC is the Hermitian 
conjugate of the preceding term and Vym(R)  is the matrix element of the perturbing 
potential introduced at site R by the interstitial. It has been shown that, for substitutional 
(Moraitis 1978) and interstitial (Khalifeh et a1 1982a) impurities, for Hamiltonian H = 
Ho + AV, 

- 6EeI-,1 + 6Eion-ion = - 6nio"(r)AV(r) d 3 r  (2.17) 

where dnion(r) represents the change in ionic density of the host no-ion(r) introduced by 
the relaxation. From equations (2.2), (2.6) and (2.17), the following expression for the 
variation of the total energy of the alloy is found: 

6 E  = 6E' + 6"Eb, (2.18) 

with 

6E' = - 6nio"(r)AV(r) d 3 r  (2.19a) i 

The summation is over metallic and hydrogen sites, and NTP' is the sum of two terms 

(2.20) 

AN""' = -_ Im /"(AmIG - G'Ipm') (2.21) x Ilr 

where G' is the Green function of the Hamiltonian H o  + I ZS)E?(ZS 1 .  
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which are the matrix elements of the pseudopotential introduced by the displacement 
of neutral host atoms of the alloy, this leads to 

6 E  = ANTF'(6W$,)m'm - (pmf  16AV(")/Am)) - dVp)(r)An'O"(r) d 3 r  (2.23) 
L y .  
m.m' 

with 

6V(")(r) = SVp)(r) + 6AV(")(r).  (2.24) 

By taking into account the fact that 

we obtain the final expression 

6 E  = Tr(ANGW(")) - AVe1(")(r)6An(")(r) d 3 r  J 
- 6 V ~ ) ( r ) A n ' o " ( r )  d3r .  

2.4 .  Surface of a transition metal 

The Hamiltonian of the system is given by 

H =  T + C, uat(r - A) 
A 

(2.25) 

(2.26) 

(2.27) 

where Tis the kinetic operator and uat(r - A )  is an atomic potential at site A. 
With the help of equations (2.8) and (2.9), 6Eb, is written as 

6Eb, = Tr(N6p W )  + GV(r)n"(r) d3r .  (2.28) 

If we add to this the electron-electron and ion-ion terms, given respectively by 

i 
(2.11~) and (2.11b), we obtain 

6 E  = Tr(N6qW) + 6Vio"(r)n(r) d 3 r  (2.29) J 
where 

n(r) = n"(r) - nion(r). (2.30) 

The first term on the right-hand side of equation (2.29) is the variation of the band- 
structure contribution due to the rigid displacement of the atomic orbitals. The second 
term expresses the modification of the interaction between the ion field and the charge 
density induced by the ion displacement. 
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3. Force field and dipole force tensor 

In this section we derive the force field arising from the presence of point defects and in 
the case of a surface. The dipole force tensor is derived in the case of impurities only. 

The a component of forces F,(A) acting on site A is given by 

where u,(A) is the (Y component of the displacement field. The derivative is taken for 
the unrelaxed positions (for the relaxed or equilibrium position, the forces vanish). 

The P,, components of the dipole force tensor are given by 

3.1. Transition-metal impurity 

It has been shown by Moraitis et a1 (1985) that 6 E  can be well approximated by 

6 E = C, ANT;' 6 w p m ' m .  
1 4 .  
m,m' 

If we now restrict attention to the two-centre integral approximation, we find 

(3.3) 

(3.5a) 

(3.5b) 

After some manipulation the following general expression for the dipole force tensor 
is found (Moraitis et a1 1985): 

P,, = P;, + P;: (3.6) 

p:, = - 2 p , ( z  Az"'D,E;(~)~)  (3.7a) 

p n d  na = E Ddoptj l")m'mjmm' a (@cl> (3.76) 

P m 

p # O  m,m' 

where 

A Z m  = E AN;: (3  * 8) 

(3.9) 

P 

J"' @(PI - - 2 ~ A ~ ( A N ~ ~ ; , ~  +  ANT^;^). 

Here AZ = Cm AZ" is the difference between the electrons on the impurity atom and 
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those on the pure metal atom. It is well known that the atomic-like calculation of the 
metallic levels leads to untrustworthy results due to important effects arising from 
renormalised atoms (Boudeville et a1 1983). Our purpose is therefore to express P t ,  in 
terms of the derivative of Po("). The diagonal part P",, given by equation (3.7a), is the 
product of a term relative to the defect AZm times a term Z p  p,D,o~$(n)m depending 
only on pure-metal quantities. Using translational invariance, we propose to express 
this second part in terms of the derivative of Po(")).  

This can be done by starting with the fact that the displacement of a host atom does 
not change the total number of electrons of the system. Thus 

6No(&F) = 0 (3.10) 

and S N O ( & )  can be split into a sum of neutral and charge-transfer terms: 

" ( E )  = s N O ( q E )  + sNOJyE) .  (3.11) 

The term S N O ( " ) ( ~ )  is given by 

SN(O)"(E) = Tr[(l/n) Im G06Wo("),1. (3.12) 

The derivative D&V'(")(E~) is therefore given by 

DapNO(")(&F) = n!Tm(&F)D,p&!(")m 
A.m 

(3.13) 

with 

.$"""(E) = -(l/n) Im G!$"(E). (3.14) 

As proved in appendix 1, 

DnpNo(") (&F)  E 0. (3.15) 

By multiplying (3.13) by pn and summing over p ,  it is possible to show that (appendix 
1) 

m.m' 

with 

(3.16) 

(3.17) 

The present self-consistent scheme does not invoke local charge neutrality nor the 
Born-Mayer form for the repulsive energy (Ohta et a1 1987, Sutton et a1 1988, Finnis et 
a1 1988). However, the electron density is restricted to Hartree approximation, whereas 
exchange-correlation potentials are developed in the case of the rigid-atom model 
(Finnis et a1 1988). 
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3.2. Hydrogen impurity at site I in a transition metal 

In this section we will restrict attention, for the derivation of the dipole force tensor, to 
the following Hamiltonian: 

(3.18) 

It has been shown (Khalifeh et a1 1982b) that the effect of Vym ( R )  present in equation 
(2.16) does not modify the results quantitatively. We restrict attention also, for 6 E ,  as 
in Khalifeh et a1 (1982a, b), to the first term in equation (2.26). In this case the CY 

component of the force acting on site A # I is given by 

F,(A) = F:(A) + F k ( A )  (3.19) 

with 

FO,(A)  = E' A N ; ; D , , + ~  + 2' A N ; ; ' D , ~ ~ E ~ ' I ? ~  (3 .20~)  
p . m  W + p .  

m.m 

and 

F ; ( A )  = A N Z D , , E ~ " ) S  + 2' A N : ; D , ~ ~ W "  + 2' A N ? D , ~ ~ ~ ) S ~ .  (3.20b) 

The prime means that the summation is restricted to metallic atoms only. The cor- 
responding CY component of the dipole force tensor is given by 

w%m p,m 

PL, = 2 4dW) (3.21) 
A 

whereas P t n  is the sum of two terms 

P2: can also be written (appendix 2) 

where t is  the T matrix of the impurity (Demangeat et a1 1978). 
In the work of Khalifeh et a1 (1982a, b), the derivation of P was performed in a model 

of local neutrality in the frozen alloy, where no bound states were present. In order to 
extend the approach to a more realistic model, we have to take into account, explicitly, 
the presence of these bound states. As shown by Khalifeh and Demangeat (1983), in the 
presence of a bound state, a charge transfer from metal to hydrogen appears in the 
frozen lattice and this has to be taken into account in a correct derivation of P.  The 
influence of the bound state shows up in the derivation of ANT;'. In appendix 3 we have 
derived expressions for these terms in the presence of a bound state. 
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Jena et a1 (1985) have derived lattice relaxation around hydrogen in a BCC transition 
metal, in the effective-medium approximation. In their approach the d states are approxi- 
mated by a homogeneous density of states, whereas in the present scheme the d states 
are obtained in a tight-binding approximation, which is more realistic (Friedel 1969). 

3.3. Forces at the surface of a transition metal 

Up to now only phenomenological models have been used for the determination of 
the force field at the surface. These models neglect arbitrarily the charge-transfer 
contribution in the band-structure term whereas the repulsive term is approximated 
through a Born-Mayer form (Luo and Legrand 1988). 

In this section we derive, from equation (2.29) for the variation of the total energy 
6 E  of the system, an expression for the force field induced by the surface. 

Let us first develop the trace present in (2.29): 

with 

(3.23a) 

(3.23b) 

where G is the Green function related to the Hamiltonian H of section 2.4. 
The CY component of the force F k ( p )  acting on site p is given by 

A.m h . l r f ? .  
~ ; ( p )  = D ~ , E T N G ~  + 2 ~ g , p ~ ' ~ ; p .  (3.24) 

m.m 

Let us now discuss the first term on the right-hand side of (3.24), 

D & E ~  = dA,, V , q m ( r  - h)Hqm(r  - A )  d 3 r  + HC. I 
Using the expression for H given by (2.27), we obtain 

(3.25) 

D&ET = aAP V , F m ( r  - A)ha t (A)qm(r  - A)d3r + V , q m ( r  - A) J J 
x 2 uat(r - A ' ) q m ( r  - A) d 3 r  + HC. 

A'Zd 
(3.26) 

The first integral is zero because ( V , q ) q  is an odd function. After some manipulation, 
the following expression for (3.26) is obtained: 

(3.27) 

Let us remark that A V ; ,  the modification of the crystal-field integral induced by the 
surface, can be obtained through a self-consistent calculation of the local density of state 
n;(E)  in the local neutrality approximation method for the frozen layer (DreyssC 1984). 
If AV; is independent of m, then the first term of F k ( p )  is 

DP E!" A = - &,v , ,Av; .  

- ZV,, A V ,  

where Z is the valency of the metal. 
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The second term on the right-hand side of (3.24) can be written as 

(3.28) 

The last term of the second member of equation (2.29) is now discussed. In this 
expression, 

(3.29) 

(3 .30~)  

(3.306) 

where 2," is the number of protons of the atom at site A ,  Z:lm is the number of electrons 
in the atomic nl shell of component m and q f m ( r  - A )  are the corresponding atomic 
orbitals of the core. In the point-charge approximation, we get 

(A - P I ,  
l + p .  azp / A  - pI3'  

F'h(p) = Z NZm !$ [p lm(r  - (A - p))]*  d 3 r  - Z 2  
m 

Using Fourier transformation, we obtain after some developments 

(3.31) 

(3.32) 

By definition, Z m  Ncm = 2, and finally 

FL(p) = 0 for p + +m. (3.33) 

The long-range Coulomb terms have been eliminated without invoking local charge 
neutrality at the relaxed surface. This is an improvement over methods assuming local 
charge neutrality on each atom (Luo and Legrand 1988) and a Born-Mayer form for the 
repulsive energy. We have to say, once again, that relaxation does induce charge 
transfer. While this charge transfer is rather localised, in the case of impurities it does 
not induce long-range Coulomb terms; this is not the case for surfaces. Therefore, the 
neglect of charge transfer in this last case is unrealistic. 

4. Conclusions and outlook 

We have presented a self-consistent derivation, in the tight-binding formalism, of the 
force field around defects in metals. While in the case of a point defect (substitutional 
or interstitial) we can define and estimate an expression for the dipole force tensor, in 
the case of the surface we have to restrict attention to the force field. Up to now this 
general scheme has been applied, with some simplifications, to the case of substitutional 
(Moraitis eta1 1985) and interstitial (Khalifeh et a1 1982a, b, Mokrani et a1 1989) impurities 
in transition metals. 

We will now discuss the approximations appearing in those previous calculations. 
In the case of substitutional impurities in transition metals (Moraitis et a1 1985), only 

the non-diagonal part P$zd of the dipole force tensor was estimated using a simple 
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s-band model. The numerical results exhibit the trend expected from Vegard’s law. 
However, deviations from this law are observed experimentally. We expect that this 
may be related to the diagonal part P $ j .  Here we propose a way to obtain P $ i  in terms 
of the derivatives of the hopping integrals between neutral atoms (see appendix 1). 

In the case of light interstitial impurities in transition metals, a calculation has been 
performed for hydrogen, at octahedral position, in a FCC transition metal. Unfor- 
tunately, this calculation was performed within the framework of an oversimplified 
model (Khan et a1 1980) of the electronic structure of the alloy. For the frozen alloy, the 
local neutrality criterion used in this model could not explain the presence of a bound 
state in this alloy. A better model was therefore built (Khalifeh and Demangeat 1983) 
and charge transfer (from Pd to H) together with the presence of a bound state below 
the conduction band was obtained. More recently (Moraitis et af  1984a), this charge- 
transfer effect was taken into account for the derivation of P. The effect of the bound 
state (as shown explicitly in appendix 3) was only taken into account in the case of H in 
V and Nb (Mokrani et af  1989). 

The formalism developed for the determination of the force field in bulk transition- 
metal alloy is extended to the case of a metallic surface. Our self-consistent scheme leads 
to a simple expression for the forces without invoking local charge neutrality induced 
by the relaxation nor a phenomenological repulsive pair interaction. 

Moreover, we will present in a forthcoming publication (Moraitis and Demangeat 
1990) a derivation of the force constants of the pure transition metal and their sub- 
stitutional alloy in the Christensen (1984) scheme. In these formulae, due to exact 
cancellation, charge transfer induced from the atomic movement does not appear, 
contrary to the case already presented by Moraitis et a1 (1984b). 

Appendix 1 

The purpose of this appendix is to relate the quantity C, p , D a O ~ i ( n ) m  that appears in 
P:, (cf equation (3.7a)) in terms of the derivatives of the hopping integrals. For 
simplicity, we drop the supercripts 0 and (n) in the following. 

This proof is in two steps: the first is to show that DaP,N(&F) = 0; the second is to use 
this relation in order to express P i a  in terms of DaA/3TF . 

Al .1 .  Proof of D,,N(&,) = 0,  forpure metal 

Starting with equation (3.13), 

DopN(&F) = 2 n & m ( & F ) D a p & T  -k D,,P?t”’nCIim(&F) 
I.m A,v .  

m,m’ 

we will first prove that the second term on the right-hand side is zero. Indeed, 

x &,PTt”’n5m(&F) = x ~ d P K ’ , n C I : ; , o ( & F )  
A , v ,  v .  
m,m’ m.m’ 

+ DddPTyL,On?” ( & F )  
A. 

m.m’ 

(Al.1) 

(A1.2) 
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where we have taken into account the fact that the perfect lattice is translationally 
invariant. 

The fact that, in the case of d orbitals, (i) @"' is an even function of p and its gradient 
is an odd function, and (ii) nr'-",(&F) = nfLm(&F), leads to 

(A1.3) 

2 D,,P;ll"'nri"(&F) = 0. (A1.4) 

Also, we will prove that the first term on the right-hand side of equation (Al . l )  is equal 
to zero. Indeed, 

D,E? = q i ( r  - h ) V f f v ( r  - p)  d3r .  (A1.5) 

A . V .  
m.m' 

i 
Because V,v(r) is an odd function, we obtain immediately 

q $ ( r  - p)V,v(r) d 3 r  = - q i ( r  + p)V,v(r) d 3 r  (A1.6) i 
so that 

Daj4&Y = 0 for all m. (A1.7) 
A 

From equations (A1.4) and (A1.7) we obtain 
D,,N(EF) = 0. 

AI.2.  A relation between Zflp (,Dd&F and the derivative of the /3s 

Let us multiply the right-hand side terms of (Al . l )  by p, and sum over 

(A1.8) 

m,m' 

It can be shown that 

2 P,Dwj4&? = - N E  PffD&pm. 
A.f l  P 

We examine now the second term of (A1.9): 

The first term on the right-hand side can be written as 

- 2 (Y - A ) a D d p C ~ - A n ~ l m h . O ( E F >  + 2 Y,DdfitTIAnYL!,O(&F). 
A , y # A  A , Y # A  

The last term of (Al . l l )  cancels with the last term of (A1.12), so that 

If we assume that E: is independent of m, we find 

(A1.10) 

(Al . l l )  

(A1.12) 

(A1.13) 

(A1.14) 
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Appendix 2 

In this appendix we derive a simple expression for P:: (equation (3.22a)) in the case of 
a light interstitial in a transition metal: 

P$: = E' AN;; AaD,~F)m.  (A2.1) 
p.m I 

In the following, we will for simplicity suppress the superscript (n). In this case, 
&; = E;" + E;" 

dma; = j & p ; H o q ;  d 3 r  + Q,;HOSQ,; d3r .  

(A2.2) 

(A2.3) 

We will first show that the contribution of this term to P"&," is zero. The first term of 
i 

(A2.3) is given by 

p&;  = - up j V q m ( r  - p ) H o q m ( r  - p )  d 3 r  (A2.4) 

where @ is the Hamiltonian of the pure metal. 
If we take into account the fact that (by symmetry) 

j Vrpm(r)ua'(r)Cpm(r) d 3 r  = 0 

then 

DZI&; = dAP V,pm(r)  uat(r - p)qm( r )  d3r  (A2.5) i P+O 

where p is a lattice vector. Now P:: can be written as 

P,m A 
Po,* na = e' AN;: 2 A,d,,D%.$. (A2.6) 

If we can neglect the m dependence of E F ,  it appears that the Q, component of P"&," 

It is trivial to see that 
is zero. 

D u  E ~ = D & E ; - A  P (A2.7) 
where 

DkAe; = q m ( r  - p ) V a u a t ( r  - i l ) q m ( r  - p )  d3r .  (A2.8) 

In the second member of (A2.8) we translate all the quantities by A ,  so that we obtain 
J 

cp ( r  - ( p  - A))V,uat (r )qm ( r  - ( p  - A)) d 3r .  

This is exactly Ddoe;EI. Therefore P"&," depends only on the derivative of the potential, 
so that it is now given by ( p  is a lattice vector) 

~ 0 . d  na = e' A ~ A N T ~ ~ , ~ + ~  D ~ E ~ .  (A2.9) 

We will now express this sum in terms of the matrix elements of the Green function 
@(E) and of the t matrix t .  Finally, after some manipulations, 

p.m A 

m'.m" 
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Appendix 3 

The effect of the bound state, present in the case of interstitial alloys, on the deter- 
mination of ANT:' (section 3.2), is given by 

ANT:' = - L I m l ' F  dE(Am1G - Colpm'). (A3.1) 
7d 

Here, we restrict attention to the bound state, so that the integration is from --cc to e,, 
(the bottom of the conduction band). 

The wavefunction I y,J of the alloy is given by 

(A3.2) 

Using the fact that we have only one bound state &hs (Khalifeh and Demangeat 1983), 

ANY:' (bs) = A T ( E ~ ~ ) A F ' ( E ~ ~ ) .  (A3.3) 

In order to get an expression for the As, we start with the fact that (y,ly,) = 1 and 
that the Schrodinger equation can be written (by taking into account that H = H' + V 
and Gi = (E - H')-l) as 

lwfl) = G'VlV,) (A3.4) 

we obtain straightforwardly 

so that 

d 
I." de ' IAT'(n)I2 = - IA;(n)12 - A:(&) (A3.5) 

with 

where the derivative is taken at the bound-state energy &bs. 

Then AN defined by (A.3) is written in the following final form: 
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